University of Montreal

Electronic structure theory group

Matthias Ernzerhof

 

Publications

[64] Francois Goyer and M. Ernzerhof. Conjugated molecules described by a one-dimensional Dirac equation. J. Chem. Theory Comput., submitted, 2010.

[63] M. Ernzerhof. Conjugated molecules described by a one-dimensional Dirac equation. J. Chem. Theory Comput., submitted, 2010.

[62] Guillaume Dumont, Paul Boulanger, Michel Côté, and M. Ernzerhof. Peierls Instability in Carbon Nanotubes. Phys. Rev. Lett., submitted, 2010. (http://arxiv.org/abs/1002.1825).

[61] Y. X. Zhou and M. Ernzerhof. Equiconducting molecular electronic devices. J. Chem. Phys., in press, 2010.

[60] M. Ernzerhof. Extended Koopmans' theorem: Resolution of the paradox. J. Chem. Theory Comput., 5:793, 2009.

[59] Philippe Rocheleau and M. Ernzerhof. Molecular conductance obtained in terms of orbital densities and polarizabilities. J. Chem. Phys., 130:184704, 2009.

[58] M. Zhuang and M. Ernzerhof. Reversibility and transport properties of dithienylethene photo switches. J. Chem. Phys., 130:114704, 2009.

[57] Ali Goker, Francois Goyer, and Matthias Ernzerhof. Bond dissociation and correlation effects in molecular electronic devices. J. Chem. Phys., 129:194901, 2008.

[56] H. Bahmann and M. Ernzerhof. Generalized-gradient exchange-correlation hole obtained from a correlation factor ansatz. J. Chem. Phys., 128:234104, 2008.

[55] S. Pesant, P. Boulanger, M. Côté, and M. Ernzerhof. Ab initio study of ladder-type polymers: Polythiophene and polypyrrole. http://arxiv.org/abs/cond-mat/0610323, Chem. Phys. Lett., 450:329, 2008.

[54] M. Ernzerhof. A simple model of molecular electronic devices and its analytical solution. J. Chem. Phys., 127:204709, 2007.

[53] F. Goyer, M. Ernzerhof, and M. Zhuang. Source and sink potentials for the description of open system with stationary current passing through. J. Chem. Phys., 126:144104, 2007.

[52] M. Ernzerhof. Density functional theory of complex transition densities. J. Chem. Phys., 125:124104, 2006.

[51] M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rocheleau. Electron transmission through aromatic. J. Chem. Theory Comput., 2:1291, 2006.

[50] M. Zhuang and M. Ernzerhof. Mechanism of a molecular electronic photo switch. Phys. Rev. B, 72:073104, 2005.

[49] M. Ernzerhof, M. Zhuang, and P. Rocheleau. Side-chain effects in molecular electronic devices. J. Chem. Phys., 123:134704, 2005.

[48] M. Zhuang, P. Rocheleau, and M. Ernzerhof. Approximate density functional theory applied to molecular quantum dots. J. Chem. Phys., 122:154705, 2005.

[47] M. Ernzerhof and Min Zhuang. A density functional method for the calculation of the zero-voltage conductance. Int. J. Quantum Chem., 101:557, 2005. Published online August 2004.

[46] M. Zhuang and M. Ernzerhof. Zero-voltage conductance of short gold nano wires. J. Chem. Phys., 120:4921, 2004.

[45] S. N. Maximoff, M. Ernzerhof, and G. E. Scuseria. Current-dependent extension of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys., 120:2105, 2004.

[44] M. Ernzerhof and M. Zhuang. Current transport through molecular electronic devices. J. Chem. Phys., 119:4134, 2003.

[43] J. Heyd, G. E. Scuseria, and M. Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 118:8207, 2003.

[42] J. Jaramillo, G. E. Scuseria, and M. Ernzerhof. Local hybrid functionals. J. Chem. Phys., 118:1068, 2003.

[41] J. Landry-Hum, V. Tessier, M. Ernzerhof, and C. Reber. Coupling between normal coordinates in the ground and excited states of coordination compounds. Electronic spectroscopy and theoretical models. Coord. Chem. Reviews, 233-234:63, 2002.

[40] S. N. Maximoff, M. Ernzerhof, and G. E. Scuseria. Functionals of the square kinetic energy density. J. Chem. Phys., 117:3074, 2002.

[39] M. Ernzerhof, S. N. Maximoff, and G. E. Scuseria. Functionals of quantities other than the electron density: Approximations to the exchange energy. J. Chem. Phys., 116:3980, 2002.

[38] S. S. Iyengar, M. Ernzerhof, and G. E. Scuseria. The challenge of creating accurate and effective kinetic energy functionals. Phys. Rev. A, 63:52508, 2001.

[37] C. Adamo, M. Ernzerhof, and G. E. Scuseria. The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional. J. Chem. Phys., 112:2643, 2000.

[36] M. Ernzerhof and G. E. Scuseria. Describing the slowly-varying non-interacting electron gas in terms of its kinetic energy density. J. Chem. Phys., 112:5270, 2000.

[35] M. Ernzerhof and G. E. Scuseria. Perspective on "Inhomogeneous Electron Gas" by Pierre Hohenberg and Walter Kohn. Theo. Chem. Acc., 103:259, 2000.

[34] M. Ernzerhof. The role of the kinetic energy density in approximations to the exchange energy. In Á. Nagy and I.G. Csizmadia, editors, Special issue of THEOCHEM in Honour of Gáspár. Theochem, 501-502:59, 2000.

[33] M. Ernzerhof and G. E. Scuseria. Kinetic energy density dependent approximations to the exchange energy. J. Chem. Phys., 111:911, 1999.

[32] M. Ernzerhof and G. E. Scuseria. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys., 110:5029, 1999.

[31] J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke. Why density-gradient corrections improve atomization energies and barrier heights. In J. Seminario, editor, Advances in Quantum Chemistry, Volume 33. Academic Press, New York, 1998.

[30] J. P. Perdew and M. Ernzerhof. Driving out the self-interaction error. In J. F. Dobson, G. Vignale, and M. P. Das, editors, Electronic Density Functional Theory: Recent Progress and New Directions. Plenum Press, New York, 1998.

[29] K. Burke, J. P. Perdew, and M. Ernzerhof. Mixing exact exchange with GGA: When to say when. In J. F. Dobson, G. Vignale, and M. P. Das, editors, Electronic Density Functional Theory: Recent Progress and New Directions. Plenum Press, New York, 1998.

[28] M. Ernzerhof. Hybrid methods: Combining density functional and wavefunction theory. In D. Joubert, editor, Density Functionals: Theory and Applications, Volume 500 of Lecture Notes in Physics. Springer Verlag, Berlin, 1998.

[27] M. Ernzerhof and J. P. Perdew. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys., 109:3313, 1998.

[26] K. Burke, J. P. Perdew, and M. Ernzerhof. Why semi-local functionals work: Accuracy of the on-top pair density. J. Chem. Phys., 109:3760, 1998.

[25] J. P. Perdew, K. Burke, and M. Ernzerhof. Reply to a comment on Ref. 10. Phys. Rev. Lett., 80:891, 1997.

[24] J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke. Nonlocality of exchange and correlation: Physical origins and chemical consequences. J. Chem. Phys., 108:1522, 1997.

[23] A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew. Distributions and averages of electron density parameters: Explaining the effects of gradient corrections. J. Chem. Phys., 106:10184, 1997.

[22] M. Ernzerhof, J. P. Perdew, and K. Burke. Coupling-constant dependence of atomization energies. Int. J. Quantum Chem., 64:285, 1997.

[21] K. Burke, M. Ernzerhof, and J. P. Perdew. The adiabatic connection method: A non-empirical hybrid. Chem. Phys. Lett., 265:115, 1997.

[20] J. P. Perdew, M. Ernzerhof, K. Burke, and A. Savin. On-top pair-density interpretation of spin density functional theory, with applications to magnetism. Int. J. Quantum Chem., 61:197, 1997.

[19] K. Burke, J. P. Perdew, and M. Ernzerhof. Why the generalized gradient approximation works and how to go beyond it. Int. J. Quantum Chem., 61:287, 1997.

[18] M. Ernzerhof. Hydrogen bond. In Macmillan Enzyclopedia of Physics. Macmillan Publishing Company, New York, 1996.

[17] M. Ernzerhof, K. Burke, and J. P. Perdew. Density functional theory, the exchange hole, and the molecular bond. In J. M. Seminario, editor, Recent Developments in Density Functional Theory. Elsevier, Amsterdam, 1996.

[16] M. Ernzerhof, J. P. Perdew, and K. Burke. Density functionals: Where do they come from, why do they work? In R. F. Nalewajski, editor, Density Functional Theory I, Vol 180 of Topics in Current Chemistry. Springer Verlag, Berlin, 1996.

[15] J. P. Perdew, K. Burke, and M. Ernzerhof. Local and gradient-corrected density functionals: A glance under the hood. In B. B. Laired, R. Ross, and T. Ziegler, editors, Density Functional Methods in Chemistry. American Chemical Society Symposium Series, Washington, DC, 1996.

[14] P. Bündgen, A. J. Thakkar, F. Grein, M. Ernzerhof, C. M. Marian, and B. Nestmann. Moments of the quadrupole oscillator strength distribution for O2, N2, CO, HF, HCl, N2 O, CO2, OCS, CS2, and C2 H2: Ab initio sum rule calculations. Chem. Phys. Lett., 261:625, 1996.

[13] M. Ernzerhof. Construction of the adiabatic connection. Chem. Phys. Lett., 263:499, 1996.

[12] J. P. Perdew, M. Ernzerhof, and K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105:9982, 1996.

[11] M. Levy, M. Ernzerhof, and A. Görling. Exact local exchange potential from Fock equations at vanishing coupling constant, and d Tc / dn from wavefunction calculations at full coupling constant. Phys. Rev. A, 53:3963, 1996.

[10] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865, 1996.

[9] M. Ernzerhof, K. Burke, and J. P. Perdew. Long-range asymptotic behavior of ground-state wavefunctions, one-matrices, and pair densities. J. Phys. Chem., 105:2798, 1996.

[8] M. Mühlhäuser, B. Engels, M. Ernzerhof, C. M. Marian, and S. D. Peyerimhoff. Relative stability of the planar and butterfly-like structures of cyclic P2 O2. J. Phys. Chem., 100:120, 1996.

[7] A. Görling and M. Ernzerhof. On the energy difference between Kohn- Sham and Hartree- Fock wavefunctions yielding the same electron density. Phys. Rev. A, 51:4501, 1995.

[6] H. U. Suter, V. Pleß, M. Ernzerhof, and B. Engels. Difficulties in the calculation of electron spin resonance parameters using density functional methods. Chem. Phys. Lett., 230:398, 1994.

[5] M. Ernzerhof. Taylor-series expansion of density functionals. Phys. Rev. A, 50:4593, 1994.

[4] M. Ernzerhof. Density functional theory as an example for the construction of stationarity principles. Phys. Rev. A, 49:76, 1994.

[3] M. Ernzerhof, C. M. Marian, and S. D. Peyerimhoff. Energy derivative versus expectation value approach: The dipole moment of CO. Chem. Phys. Lett., 204:59, 1993.

[2] M. Ernzerhof, C. M. Marian, and S. D. Peyerimhoff. On the calculation of first-order properties: Expectation value versus energy derivative approach. Int. J. Quantum Chem., 43:659, 1992.

[1] R. Shepard, H. Lischka, P. G. Szalay, T. Kovar, and M. Ernzerhof. A general multireference configuration interaction gradient program. J. Chem. Phys., 96:2085, 1992.